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The principle of local equilibrium in nonequilibrium thermodynamics of a multicomponent 
continuum is expressed by the Gibbs caloric equation in field variables. This equation enables 
to define thermodynamic specific quantities of a mixture and partial specific quantities so that the 
same relations apply among them as among analogous quantities in classical thermodynamics 
(e.g. the Gibbs-Duhem equation). However, it is not necessary to introduce the assumption 
of homogeneity of the system. In the special case of a homogeneous system, the mentioned rela­
tions become identical with the common equations of classical thermodynamics. 

The main assumption in irreversible thermodynamics of a continuum is the principle of local 
equilibrium1 

-7. Its formulations lie between the following two extremes: First formulation 
(Meixner, Reik2

): An inhomogeneous continuum (the term "homogeneous" is understood as 
uniform, i.e. in a homogeneous system the space gradients of all quantities are zero) is divided 
into sufficiently small volume elements, each of which is considered as an open homogeneous 
system. When we express the quantities and equations of classical thermodynamics in this element 
in specific (intensive) variables, we can treat them as functions of coordinates and time (cor­
responding to the given element), i.e. as field variables. The principle of local equilibrium can then 
be formulated as follows: All relations among specific (intensive) quantities in a nonequilibrium 
heterogeneous system are the same as in an open homogeneous system described by classical 
thermodynamics. Hence, in a nonequilibrium system, not only the Gibbs caloric equation (ex­
pressed in specific quantities) but also the relations among partial specific quantities, the Gibbs­
Duhem equation etc., apply. 

Second formulation (Truesdell-Toupin8
, § 246 f.) is typical for the field theory. To a particle 

of a continuum (in the sense of continuum mechanics 7 ,8), a specific internal energy is apriori 
attributed, which depends on a set of a priori chosen parameters (generally also on their past 
values9,1l). Determining these parameters and dependence can be considered in this formula­
tion as a postulate of local equilibrium in the most general sense. Its validity can be checked, 
as usual in the field theory8, only on examining its consequences. 

For most materials, processes and conditions studied by the "classical" irreversible thermo­
dynamics of continuum1 -7, this formulation of the principle of local equilibrium is unneces­
sarily general. As a first approximation 8 

-14, it is sufficient to assume that the specific internal 
energy depends on the same quantities in the same manner as in an open homogeneous system, 
i.e. on the specific entropy and a set of intensive variables of mechanic and electromagnetic 
character (forming a so-called "thermodynamic substate", § 246 in ref. 8), corresponding at a giv­
en time to a given particle of the continuum. 
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The second formulation is obviously more plausible owing to its deductive character (the homo­
geneous case is a special one, in contrast to the inductive first formulation), possibility of a wide 
generalization (even systems far from equilibrium can be considered), simplicity and conciseness 
of the basic postulate (only the caloric equation and quantities involved in it are postulated, 
whereas in the first formulation all thermOdynamic quantities and relations are postulated) and 
fin a lly because this point of view of the field theory has been used a lready in deriving balance 
equations of continuum, to which the principle of local equilibrium in irreversible thermodynamics 
is applied. • 

The term " principle of local equilibrium" is not quite adequate in the second formulation, 
especially in the more general concept (even in the first formulation, the volume element forming 
an open homogeneous system need not be in, e.g., chemical equilibrium: ref. 5, § 1.23). It is 
better to speak about formulation of a constitutive equation8 for the internal energy describing 
sufficiently the given system under given conditions. 

It can be expected intuitively that we obtain the same results on using the second formulation 
of the principle of local equilibrium (in the simplified form of the above-mentioned approxima­
tion) as on using the first formulation. However, Truesdell (ref. 8 , § 254, 255, 260, and ref. t 5) 

pointed out that generally this is not the case. In the second formulation of local equilibrium, 
based on postulation of the Gibbs caloric equation, the chemical potentials need not have their 
usual significance, the partial quantities must be defined a priori (for multicomponent continua, 
the starting postulates of local equilibrium are a priori postulated caloric equations of compo­
nents) and the Gibbs-Duhem equation does not apply. 

It will be shown in the present work that the mentioned conclusions are not neces­
sary. We shall start, similar to Truesde1l 8 , from the second formulation of the prin­
ciple of local equilibrium by postulation of the Gibbs caloric equation for a mixture 
(our method does not require to postulate caloric equations of components a priori). 
We shall show that the chemical potential and partial specific quantities can be 
defined so that they fulfil the Gibbs-Duhem equation, and it is not necessary to speak 
about homogeneity of the system. In the special case of a homogeneous system 
these quantities and relations are identical with equally termed quantities and rela­
tions of classical thermodynamics t 6 . 

By the mentioned method, it can be achieved that the more plausible second formu­
lation of the principle of local equilibrium in the simplified form leads to the same 
consequences as the first one. Owing to this agreement, the thermodynamic quantities 
and relations in the previous work t 7 - 19 (where the first formulation, partial specific 
quantities and the Gibbs-Duhem equation were used) can be considered as those 
which are defined and derived in the present work. This is consistent with the fact 
that the balance equations of a multi component continuum were postulated for 
mixtures 17 similarly as the Gibbs caloric equation in the mentioned second formula­
tion of the local equilibrium principle (in contrast to Truesdell and Toupin8

). 

Gibbs Caloric Equation, Definitions of Chemical Potential and Thermodynamic 
Pressure 

We shall consider for simplicity a nonequilibrium n-component isotropic system 
without polarization and magnetization, the properties of which are continuous 
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functions of coordinates and time. We formulate the principle of local equilibrium 
as follows: The particle of a continuum (in the sense of the theory of continuum 7,8) 
is a p.riori characterized by a specific internal energy, u, which is assumed to depend 
on specific entropy, s, and densities of components, (named weight concentrations 
in chemistry) 121, Qz, ... Qn of the particle at a given time according to the Gibbs 
caloric equation 

(1) 

It is assumed for the sake of simplicity that this functional dependence is the same 
for all particles of the envisaged system, so that the specific internal energy u depends 
on the particle and time (or place and time) only through the variables sand QI 

through Qn' In such a case, the differential of Eq. (1) need not be restricted to time 
changes for a given particle but can involve also time changes in a given place and 
space changes at a given time. All following equations are therefore valid not only 
for substantial derivatives (time changes for a given particle) but also for partial 
time derivatives and space gradients (Truesdell and Toupin8

, Eq. 247'6). 
Finally we assume regularity (Cj.8, § 247): All thermodynamic equations can be 

differentiated as many times as necessary and are always capable of inversion, so that 
any variable can be expressed as a function of the others. 

From Eq. (1) we obtain the differential (Cj.8, § 247) 

n 

du = T ds + L ri dQi , (2) 
i=1 

where the temperature Tis defined as 

T== (8uI8s)ei' i = 1 to n. (3) 

The lower index i with the symbol after the parentheses will be understood so that 
the differentiation is performed at constant Q 1, Q2 •.• Qn; analogously in further text. 
The quantities r i are defined as 

ri == (8uI8Qi)s,Qi' i = 1 to n. ( 4) 

The upper index i with the symbol after the parentheses means that the differentiation 
is performed with respect to Qi while other indexed quantities are constant. Further 
we introduce the density Q of the mixture, the specific volume v and the mass fraction 
Wi of component i (i = 1 to n): 

n 

Q == L Qi' V == l/Q, Wi == QJQ . (5), (6), (7) 
i = I 
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From Eqs (5) and (7) follows (8); further we introduce the specific free energy f: 

I Wi = 1; f =0 U - Ts. (8), (9) 
i;1 

Using these equations we define the thermodynamic pressure, P, and the (specific) 
chemical potential of species i, fli: 

P =0 L Wi (/ri; fli =0 rig + f, i = 1 to n. (10) , (11) 
i ; 1 

Now we shalI show that these definitions lead to equations formally agreeing with 
those obtained from the first formulation of the local equilibrium principle. After­
wards, it will turn out that the aggreement is not only formal, since the mentioned 
quantities and relations in the special case of a homogeneous open system are identical 
with analogously denoted quantities and relations of classical thermodynamics. 

Introducing Eqs (2) and (9) into the differential of internal energy density, (}U, and 
expressing dg from (5), rearranging and using the definition (11) we obtain the equa­
tion 

d(gu) = Td(es) + L fl; dei' (12) 
i ; 1 

which is formally identical with that given by Meixner and Reik 2 and Haases. Ex­
pressing the differentials of gi from Eqs (6) and (7), substituting them in (2) and lIsing 
the definition of the thermodynamic pressure (10) we obtain 

du = Tds - P dv + L rie dW i . 
i ; 1 

Here the quantities Wi are mutually dependent as a result ofEq. (8). Hence, 

n-l 

du = Tds - Pdv + I (rje - rne)dw j . 
j ; 1 

With the use of our definition of chemical potential (I1), Eq . (14) gives 

n-1 

du = Tds - Pdv + L(flj - fln)dw j , 
j; 1 

or Eq. (! 3) with respect to (8) gives 

n 

du = Tds - P dv + L fli dW i . 
i ; 1 

(I3) 

(14) 

(! 5) 

(16) 

These results are formally identical with the usual formulation of the Gibbs caloric 
equation used in irreversible thermodynamics l - 7 . 
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It should be mentioned that if we start from postulation of a caloric equation 

in which the specific internal energy u is a function of s, v, WI to Wn _ I (or s, v, WI to Wn 
with the condition (8)), we shall not obtain an unambiguous definition of chemical 
potential, as stated already by Truesdell (ref. 8, § 255); instead of Eqs (16) and (15) 
we shall have 

II 

du = Tds - P dv + LTf.1i dwi , 
i= 1 

11-1 

du = Tds - Pdv + L(Tf.1j - Tf.1n)dw j , 

j=1 

(17) 

(18) 

where the chemical potential after Truesdell (ref. 8
, Eq. (255.2)3)' T p ;, is defined as 

T f.1i == r j (! + qJ, i = 1 to n . (19) 

Here (p means an arbitrary function of s, v, WI to Wn independent of the index i. 

This arbitrariness is due to Eq. (8). The quantity T pj is not even in a homogeneous 
system identical with the chemical potential (ref. 8, § 260) defined as partial specific 
free enthalpy; e.g., it does not obey the Gibbs-Duhem equation. This disadvantage is 
avoided in our theory; the function qJ in Eq. (19) is set equal to the specific free energy f 
and the chemical potential defined by Eq. (11) has, as will be shown in further text, the 

same properties as partial specific free enthalpy. 

Gibbs-Duhem Equation and Partial Specific Quantities 

From Eqs (6), (8), (10) and (11) follows an important equation: 

II 

Lf.1iWj = Pv + f· 
i= I 

Now, let us define the specific enthalpy h 

h == u + Pv, 

and the specific free enthalpy g 

g == h - Ts = f + Pv = u - Ts + Pv . 

Eq. (20) can then be rewritten as 
II 

g = Lf.1 jWj . 
;=1 

On differentiating Eq. (22) and using (15) we obtain 

II 

dg = - s d T + v dP + L (f.1 j - f.1n) d W j , 
j= 1 
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or using Eq. (I 6) 

dg = - s dT + v dP + I Pi dw i · 
;;1 

From Eq . (24) it follows that 

(8g/8wj)P.T, wJ = Pj - Pn, j = 1 to n - 1, 

and with the aid of Eqs (8), (23) and (26) we get 

n-1 

Pn = g - I wi8g/8w j)P ,T,wJ • 
j;1 

Samohyl: 

(25) 

(26) 

(27) 

On differentiating Eq. (23) and comparing the result with (24) or (25), we obtain 
the Gibbs-Duhem equation 

-sdT+ vdP - Iwidpi = O. (28) 
; ; 1 

This cannot be derived for the Truesdell chemical potentials, Eq. (19), since owing 
to indeterminacy ot-the function ({J they do not obey Eq. (23). 

It is obvious from Eqs (24), (26) and (27) that the chemical potential Iti' defined 
by Eq. (11), can be expressed as a function of P, T, WI to Wn _ 1 . The partial specific 
quantities can then be defined as follows. Partial specific entropy 

Si == -(8p;/8T)p,wJ' i = 1 to n, j = 1 to n - 1, 

partial specific volume 

Vi == (8p;/8Ph'WJ' i = 1 to n, j = 1 to n - 1 . 

(29) 

(30) 

With the aid of the definitions (3), (10), (11), (29) and (30), we can define the partial 
specific free energy 

Ii == Pi - PVi' i = 1 to n, (31) 

the partial specific internal energy 

Ui == Pi - PVi + TSi = Ii + Ts i , i = 1 to n, (32) 

and the partial specific enthalpy 

hi == Pi + TS i = U i + Pvi , i = 1 to n . (33) 

From Eqs (8), (23), (24) and (29) we obtain 

S = -(8g/8T)p,Wk = - ± wl8p;/8T)p,Wk = £ WiSi , (34) 
;;1 ;;1 
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where k = 1 to n - ]. Analogously from Eqs (8), (23), (24) and (30) 

v = (ag japh,wk = ± wi(afl;japh,wk = ± WiVi . 
i=1 i= I 

1213 

(35) 

On multiplying Eqs (31)-(33) by Wi' summing from i = 1 to n and using Eqs (22), 
(23), (34) and (35) we obtain analogously 

n n 

i = I wf, U = I WiUi, h = I hiw j • (36)-(38) 
i=1 i = l i = l 

On differentiating Eq. (26) with respect to Tor P at constant P or T and WI through 
Wn _ I and using (24) and (29) or (30) we obtain 

( a ( a
g

) ) ( Oflj) ( a
fl n

) 
aT aWj P,T,wj p,W) = aT P,Wj - aT p,W) 

and analogously (asjawj)p,T,wJ = Sj - Sn, j = ] to n - 1, (39) 

(40) 

Analogous expressions for the functions i, hand U of the variables P, T, WI through 
Wn _ I can be derived from Eq. (22) by differentiating with respect to W j (j = 1 to n - 1) 
and using (26), (31)-(33), (39) and (40): 

(aijaW j)p,T,wJ = i j - in' (ahjaWj)p,T,w) = h j - hn, 

(aujaWj)p,T,wJ = Uj - Un' 

(41), (42) 

(43) 

It is seen that a specific quantity y (i. e. i , g, h, s, U or v) is related to the correspon­
ding partial specific quantity Yi by Eqs (23), (26), (34)-(43), which can be written ge­

nerally as 
n 

Y = I WiYi, (oyjawj)p,T ,wJ = Yj - Yn' j = 1 to n = 1 (44), (45) 
i = 1 

Eqs (8), (44) and (45) give (cj.(27)) 
n - l 

Yn = Y - L wlayjowj)P,T,wJ , (46) 
j = 1 

Since Y and Yi are also functions of P, T, WI through Wn _ l , it is possible to write (with 

the use of Eq. (45)) 
n-I 

dy = (ayjaT)p,wk dT + (ayjaph,wk dP + I (Yj - Yk) dW j (47) 
j= I 

with k = 1 through n - 1. On differentiating Eq. (44), using (8) and comparing 
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with (47) we obtain the Gibbs-Duhem equation in the general form 

/I 

(ay/aT)p,wj dT + (ay/aph,Wj dP - L Wi dYi = 0 (48) 
i ~ 1 

withj = 1 through n - 1. (Eq. (28) was derived in an analogous way.) 
It should be stressed that these equations were derived regardless of whether the 

system is homogeneous or not. Equations of the form (48) can therefor~ be applied 
to inhomogeneous systems. This is the case, for example, when Eq. (28) is used to de­
rive the Prigogine theorem l

-
7

,19 or to prove (for y = v, Yi = Vi) that a single dif­
fusion coefficient is sufficient to characterize isothermal diffusion in binary mixtures2o

. 

TruesdeIl8 
,15 , however, concluded from the invalidity of Eq. (48) for his quantities 

Ttt i (Eq . (19)) that the Gibbs-Duhem equations imply the assumption of homogeneity 
and hence do not apply for inhomogeneous mixtures. Our method eliminates this 
objection even when the second formulation of tile local equilibrium principle is used. 

Homogeneous Systems 

The quantities defined on the basis of the postulated Eg. (1) for the general case 
of an inhomogeneous nonequilibrium system have the same properties as analogously 
named quantities in an open homogeneous system. It will be shown now that in a spe­
cial case of a homogeneous system, the quantities defined above are identical with 
analogously named quantities of classical thermodynamics. 

We shall proceed similarly as Truesdell8 in § 260. For an open homogeneous 
'system, we shall assume that the specific quantities defined in this work are related 
to the extensive quantities, namely internal energy U, entropy S and volume V, 
as follows: 

U = mu, S = ms, V = mv, 

where m denotes mass of the system: 

m = Lmi • 
i~l 

The masses m i of the components obey the relation 

Wi = mJm, i = 1 to n. 

(49)-(51) 

(52) 

(53) 

Now we shall make use of the function u = u(s, V, WI .•. wn _ 1) (Eg. (1) after substi­
tuting (6)-(8) which, of course, apply also in this case of a homogeneous equi­
librium system) together with Eqs (49)-(53): 

U = mu(S/m, Vim, mdm, ... mn_l/m) = u(s, V, ml, ... mn_l' m). (54) 
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Hence, the internal energy U is a function of independent variables S, V, ml ... mn _ 1 

and m. Its differential is 

n-I 

dU = TdS - PdV+ I(llj -Iln)dmj + 
j=1 

. + (aujam)S,V,mk dm, k = 1 to n - 1 , 

since according to Eq. (15) 

(55) 

(aUjaS)v,mJ,m = (amujams)v,mj,m = (aujas)v,Wj = T, (56) 

(aujaV)s,mj,m = (amujamv)s,mj,m = (aujav)s,Wj = -P, (57) 

(aujamj)s,v,mJ,m = (amujamwj)S,V,mj,m = (aujaWj)s,v,wj = Ilj - lin (58) 

and j = 1 through n - 1 in each equation. It is seen that the function U in Eq. (54) 
is a homogeneous function of first order with respect to all variables S, V, m 1 through 
mn _ 1 and m, so that according to the Euler theorem 

n-l 

U = TS - PV + I (Ilj - fln) mj + (aujam)S,V,mk m, k = 1 to n - 1. (59) 
j=1 

This equation is divided by the total mass of the system m and combined with Eqs 
(49)-(53) to give 

n-l 

U = Ts - Pu + I(lIj - lin) Wj + (aujam)S,V,mk' k = 1 to n - 1. (60) 
j=l 

Here we introduce Eqs (22) and (23) (which, of course, apply also in the special case 
of a homogeneous system) and obtain 

lin = (aujam)S,V ,mk = (aujamn)S,V,mk' k = 1 to n - 1, (61) 

where the latter equality follows from Eq.{52). Since any component can be regarded 
as n-th component, the definition (61) of the chemical potential (11) is for a homo­
geneous system identical with that used in classical thermodynamics. 

On introducing Eq. (61) into (55) and expressing dm with the aid of (52) we obtain 
the classical Gibbs equation 

n 

dU = TdS - P dV + I IIi dm i . (62) 
;=1 

From this it is apparent that if U, S, Vand mi have the same meaning as in classic 
thermodynamics, our definitions (3), (10) and (11) of T, P and IIi and the quantities 
s, v, u and Wj (Eqs (49)-(53)) are identical with equally named quantities of a homo-
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geneous open system. All other quantities can be derived from them by the same rela­
tions as in classical thermodynamics, hence they are also identical with equally named 
quantities of an open homogeneous system. 

It should be noted that the Gibbs equation (62) would not hold with Truesdell 
chemical potentials TPi (Eq. (19)) since they do not obey Eq. (23) used in its deriva­
tion. However, it can be written in the specific form with the chemical potentials 
T Pi similarly as with IIi (Eqs (15) - (18)). This fact forms tqe basis of Truesdell's 
criticism of using the Gibbs equation in specific variables in irreversible thermbdyna­
mics (ref. s, § 255 and 260). The chemical potential IIi defined in the present work 
by Eg. (11) fulfils in an inhomogeneous nonequilibrium system the Gibbs caloric 
equation in the form (15) or (16) and the Gibbs-Duhem equation (28); in a homo­
geneous system, in which it obtains its classical meaning, it fulfils the Gibbs equation 
in extensive form (62) (as well as the Gibbs-Duhem equation which can be obtained 
in extensive form by multiplying Eq. (28) by m and using (50), (51) and (53)). 

It can be concluded that the postulation of the caloric equation (1) for a particle 
of an inhomogeneous continuum (i.e. the second formulation of the principle of local 
equilibrium) ensures, together with suitable definitions, the validity of all usual thermo­
dynamic relations in specific variables in a nonequilibrium continuum, and it is not 
necessary to use the artificial first formulation of the principle of local equilibrium. 

LIST OF SYMBOLS 

I specific free energy 
Ii partial specific free energy 
9 specific free enthalpy 
h specific enthalpy 
hi partial specific enthalpy 
rn mass of system 
rni mass of i-th component 

. P thermodynamic pressure 
ri quantity defined by Eq. (4) 

specific entropy 
Si partial specific entropy 
S entropy 
T temperature 
u specific internal energy 
ui partial specific internal energy 
U internal energy 

specific volume 
Vi partial specific volume 
V volume 
Wi mass fraction of i-th component 
y specific quantity 
Yi partial specific quantity 
Pi (specific) chemical potential 
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T fli chemical potential after Truesdell (Eq. (19» 
density of mixture 

(Ii density of i-th component (weight concentration) 
rp arbitrary function in Eq. (19) 
Indexes i, j, k, I denote arbitrary components, index n n-th component. 

REFERENCES 

1. Prigogine I. : Etude Thermodynamique des Phenomenes Irreversibles. Dunod-Desoer, Paris­
Liege 1947. 

2. Meixner J., Reik H. G. in the book: Handbuch der Physik III/2 (S. Flugge. E ). Springer, 
Berlin 1959. 

3. de Groot S. R., Mazur P.: Nonequilibrium Thermodynamics. North Holland, Am~ ; jam 1962. 
4. Fitts D. D.: Nonequilibrium Thermodynamics. McGraw-Hill, New York 1962. / ' 
5. Haase R.: Thermodynamik der Irreversiblen Prozesse. Steinkopf, Darmstadt 19":';; 
6. Prigogine 1.: Introduction ala Thermodynamique des Processus Irreversibles. T'; , Paris 1968. 
7. Gyarmati 1.: Nonequilibrium Thermodynamics. Springer, New York 1970. ' 
8. Truesdell c., Toupin R. in the book: Handbuch der Physik III/l (S. Flugge, Ed.). Springer, 

Berlin 1960. 
9. Meixner J.: Arch. Rat. Mech. Anal. 33,33 (1969). 

10. Broer L. J. F. in the book: Some Basic Properties of Relaxation in Gas Dynamics; Nonequi-
librium Flow, Part II (P. P. Wegener, Ed.). M. Dekker, New York 1970. 

11. Meixner J.: J. Phys. Soc. Japan 26, Supplement, 212 (1969). 
12. Bowen R. M.: Arch. Rat. Mech. Anal. 24, 370 (1967). 
13. Coleman B. D., Mizel V. J.: J. Chern. Phys. 40,1116 (1964). 
14. Nicolis G ., Wallen born J., Velarde M. G.: Physica 43, 263 (1969). 
15. Truesdell c.: J. Chern. Phys. 37, 2336 (1962). 
16. Haase R.: Thermodynamik der Mischphasen. Springer, Berlin 1956. 
17. Samohyl 1.: This Journal 34, 2483 (1969). 
18. SamohYI1.: This Journal 34, 2501 (1969). 
19. SamohYII.: This Journal, in press. 
20. Tyrrell H. J. V.: Diffusion and Heat Flow in Liquids. Butterworths, London 1961. 

Translated by K. Micka. 

Collection Czechos\ov, Chem. Commun, /Vol. 37/ (1972) 




